
Joint species distribution models reveal taxon-specific
sensitivities to potential anthropogenic alteration

Darin A. Kopp1,5, John L. Stoddard2,6, Ryan A. Hill2,7, Jessie M. Doyle1,3,8, Philip R. Kaufmann2,4,9,
Alan T. Herlihy4,10, and Steven G. Paulsen2,11

1Oak Ridge Institute for Science and Education Participant c/o United States Environmental Protection Agency, Office of Research and
Development, 200 Southwest 35th Street, Corvallis, Oregon 97333 USA

2United States Environmental Protection Agency, Office of Research and Development, 200 Southwest 35th Street, Corvallis,
Oregon 97333 USA

3Oregon Department of Fish and Wildlife, 4034 Fairview Industrial Drive Southeast, Salem, Oregon 97302 USA
4Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Nash Hall, 2820 Southwest Campus Way,

Corvallis, Oregon 97331 USA

Abstract: Taxon–environment relationships can elucidate a taxon’s tolerance or sensitivity to specific environmen-
tal conditions. We use a joint species distribution modeling framework to quantify relationships between ∼1700 ben-
thic macroinvertebrate assemblages in streams and rivers across the contiguous United States and several environ-
mental gradients that are susceptible to human alteration (e.g., nutrients, salinity, physical habitat, and climate).
We found that the predicted occurrence probability for sampling units where a taxon actually occurs was 0.15 to
0.24 greater than the predicted occurrence probability for sampling units where a taxon does not occur, and a relatively
large percentage (32–58%) responded to gradients of substrate diameter, mean summer air temperature, or total P. At
the assemblage level, genus richness could change along environmental gradients by asmany as 5 to 17 taxa depending
on the ecoregion. Often, the largest change in genus richness was associated with sediment diameter. We also inves-
tigated whether a suite of traits (i.e., clinger, scraper, pollution tolerance, and thermal optima) were related to a genus’
association with an environmental gradient and found that some traits are positively related to an organism’s occur-
rence along one environmental gradient but negatively related to its occurrence along another. For example, in several
ecoregions, thermal preference was positively related to mean summer air temperature but negatively related to nu-
trient concentrations. Collectively, our results showcase a multivariate approach for modeling biotic assemblages that
can integrate multiple sources of information (i.e., environmental factors, biological traits, phylogenetic relationships,
and co-occurrences) that are routinely collected by biomonitoring programs.
Key words: National Rivers and Streams Assessment Program, benthic macroinvertebrates, joint species distribution
modeling, hierarchical modeling of species communities, taxon–environment relationships, tolerance, sensitivity

Anthropogenic activities modify environmental gradients
and create habitats with specific, and sometimes novel, con-
ditions (Poff et al. 2007, Heino et al. 2013, Groffman et al.
2014). Identifying which organisms could disappear, persist,
or appear under anthropogenic stress is a central objective of
bioassessment (Clarke et al. 2003, Yuan 2006, Hawkins et al.
2010, 2015). Quantifying relationships between the occur-
rence of an organism and environmental gradients can re-
veal how the organismmay respond if environmental condi-
tions change (Elith and Leathwick 2009, Ovaskainen et al.
2017, Araújo et al. 2019). When anthropogenic activities

change abiotic conditions, taxon–environment relationships
could guide predictions about which organisms could be
sensitive or tolerant to those changing conditions (Yuan
2004, Domisch et al. 2011).

In rivers and streams, anthropogenic activities can alter
chemical and physical gradients and drive changes in faunal
occurrence (Bonada et al. 2006, Dolédec and Statzner 2010,
Hawkins and Yuan 2016). Changes in benthicmacroinverte-
brate assemblagemetrics are often used to quantify themag-
nitude of anthropogenic alterations (Karr 1981, Resh 2008,
Buss et al. 2015), and taxon–environment relationships can
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reveal which taxa could increase or decrease with anthropo-
genic disturbance (Yuan 2004, 2006). For example, if anthro-
pogenic activities elevate nutrient concentrations, then taxa
with a monotonically increasing relationship with nutrients
would be expected to be tolerant to these elevated condi-
tions, and taxa with a monotonically decreasing relationship
would be expected to be sensitive. Taxa can also have uni-
modal taxon–environment relationships, but whether these
taxa are sensitive, intermediately tolerant, or tolerant de-
pends on the location of the optimum (i.e., maximum prob-
ability of occurrence along a gradient) relative to the value
associated with anthropogenic alteration (Yuan 2004, 2006).

From a conservation standpoint, quantifying taxon–
environment relationships is extremely useful (Strayer 2006,
Collier et al. 2016), but the magnitude and direction of re-
lationships can vary over geographic space (Osborne and
Suárez-Seoane 2002, Osborne et al. 2007, Chang et al. 2014,
Mao et al. 2019). Geographic variation can occur if a taxon’s
response to 1 environmental gradient depends on resource
availability, behavior, or another environmental gradient
that changes across the taxon’s range (Bolnick et al. 2011,
Heino et al. 2013, Zettler et al. 2013, Burner et al. 2021).
For example, members of Coleoptera vary in their salinity
tolerance because variation in water permanence causes
species inhabiting temporary habitats to experience a wider
range of salinities (Céspedes et al. 2013, Kefford et al. 2016).
Alternatively, when regionalization is used to define discrete
reporting units (Herlihy et al. 2008), taxon–environment re-
lationships may vary among units because regional bound-
aries only contain a portion of the environmental conditions
that limit an organism’s distribution (Feld et al. 2016, Burner
et al. 2021, Segurado et al. 2022). Because taxon–environment
relationships can vary geographically, region-specific esti-
mates may more accurately describe how organisms might
respond to anthropogenic alteration and may facilitate the
development of localized biological indices (Chang et al.
2014, Mao et al. 2019).

Joint species distribution models (JSDMs) are a multi-
variate extension of single species distribution models that
evaluate taxon–environment relationships for all taxa si-
multaneously (Warton et al. 2015, Norberg et al. 2019,
Ovaskainen and Abrego 2020). Typically, they are general-
ized linear mixed models that explicitly incorporate co-
occurrence information (Warton et al. 2015, Ovaskainen
and Abrego 2020). As such, these models evaluate taxon–
environment relationships as fixed effects and use latent
variables and co-occurrence data to model random effects
(Warton et al. 2015, Ovaskainen et al. 2016a, Norberg et al.
2019, Ovaskainen and Abrego 2020). Including random ef-
fects accounts for nonindependence in residuals caused by
missing covariates and can improve estimates for the fixed
effects (Bolker et al. 2009, McElreath 2016). This attribute of
JSDMs makes them uniquely suited for estimating region-
specific taxon–environment relationships and revealing re-

gional variation because a consistent modeling structure
can be used to estimate fixed effects in multiple regions.

In addition, JSDMs can integrate traits and phylogeny as
hierarchical terms to evaluate their influence on taxon–
environment relationships (Abrego et al. 2017). Traits can
provide a mechanism for a taxon’s persistence under certain
environmental conditions, and trait-based approaches are
increasingly used in ecological assessments (Statzner and
Bêche 2010, Heino et al. 2013). However, for a trait to be a
reliable indicator of an alteration, it should be consistently
related to an organism’s response to an environmental gra-
dient (Statzner and Bêche 2010). In actuality, organisms
are exposed to multiple environmental gradients, and a sin-
gle trait that is associated with an organism’s occurrence
along one environmental gradient could be neutral to its oc-
currence along another (Finn and Poff 2005). Thus, variation
in environmental conditions among biogeographic regions
could cause organisms with the same trait to respond differ-
ently to their environment (Heino et al. 2013, Saito et al.
2020). Because JSDMs provide a comprehensive framework
for quantifying taxon–environment relationships and as-
sessing whether these relationships are influenced by the
presence of certain traits, they could elucidate whether traits
are reliable indicators of an organism’s response to an envi-
ronmental gradient.

Here, we used JSDMs to quantify taxon–environment re-
lationships for benthicmacroinvertebrate genera along envi-
ronmental gradients commonly altered by anthropogenic
activities and to determine whether these relationships are
related to traits in 9 geographic regions of the contiguous
United States (Fig. 1). Our primary objective was to quantify
these relationships and elucidate the complexities of model-
ing entire taxonomic assemblages across multiple regions.
We hypothesized that taxon–environment relationships vary
regionally because regional boundaries do not contain the en-
tire range of conditions that limit a taxon’s distribution or
because a taxon responds to other gradients that vary across
large geographic extents (Herlihy et al. 2008, Yuan et al.
2008, Heino et al. 2013). If taxon–environment relation-
ships vary regionally, tolerance and sensitivity values de-
rived from one region may not be applicable in another
(Chang et al. 2014). We also hypothesized that traits are re-
lated to an organism’s association with an environmental
gradient, and that these relationships are consistent among
ecoregions because traits are mechanistically linked to an
organism’s behavior, tolerance, or preference for certain
environmental conditions (Townsend and Hildrew 1994,
Saito et al. 2020).

METHODS
Benthic macroinvertebrate assemblages

Since 2008, the United States Environmental Protection
Agency’s (USEPA) National Rivers and Streams Assessment
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(NRSA) surveys rivers and streams throughout the contiguous
United States every 5 y to assess their ecological condition
(USEPA 2016). For each NRSA survey, ∼2000 locations are
chosen as a spatially balanced probabilistic random sample
throughout 9 ecoregions (Olsen and Peck 2008). Procedures
for collecting macroinvertebrates are described in detail by
Hughes and Peck (2008) and USEPA (2009, 2017). Briefly,
each survey location was between 20 and 40 channel widths
or a minimum of 150 m in length, and a D-frame kick net
(500-lmmesh, 0.09-m2 area)was used to collectmacroinver-
tebrate samples along 11 transects equally spaced throughout
the location. Wadeable sites were sampled in an alternating
left, center, right order, and boatable sites were sampled by
alternating between left and right bank locations within the
wadeable margin. Samples from all 11 transects were com-
bined into a single composite sample, preserved in ethanol,
and then sent to a qualified taxonomist for identification
(USEPA 2017).

In the laboratory, a fixed count of 500 ind. was identified
to the lowest possible taxonomic level (USEPA 2017). Be-
cause it was not always possible to achieve 500 ind. from a
site, all samples were rarified to 300 ind. for consistency.
Our analysis focused on data collected during the 2018
and2019field campaign cycle and included all taxa that were
identified to genus with a prevalence ≥10% of sites within an
ecoregion (Table 1, Fig. S1). Although a benefit of JSDMs is
their ability tomodel rare taxa, fitting nonlinear models with
Bayesian inference can be challenging with large datasets,
and we chose the prevalence threshold to ensure satisfactory
convergence (Ovaskainen and Abrego 2020). We also ex-

cluded data collected during repeated visits. For each region
wemodeled 63 to 127 genera collected from 140 to 255 sites
(Table 1).

Environmental gradients
NRSA also collects a suite of environmental variables at

each location (USEPA 2017). From these data, we identi-
fied chemical, physical habitat, and climate variables that
reflect environmental gradients commonly altered by hu-
man activities (Herlihy et al. 2008; Tables 2, S1). From
the field data collected by NRSA, we selected total P (TP)
and total N (TN) as indicators of nutrient gradients, Cl2

and SO4
22 concentrations as indicators of salinity gradi-

ents, and log mean substrate diameter (LSUBD) and a ri-
parian disturbance index (RPDI) as indicators of physical
habitat gradients (USEPA 2020). TP and TN were mea-
sured by persulfate digestion and colorimetry, and Cl2

and SO4
22 concentrations were measured in water samples

by ion chromatography (USEPA 2008). LSUBD is calculated
as the log of the frequency-weighted, geometric mean par-
ticle size, and RPDI is a composite index that reflects the
intensity and proximity of anthropogenic activities (e.g.,
agriculture, roads, or buildings) in the riparian area adja-
cent to a stream (Kaufmann et al. 1999, 2009). For climate
gradients, we extracted mean summer air temperature
(MSAT; July and August) and total annual precipitation
(TPRCP) for either 2018 or 2019 (depending on the year
a site was surveyed) from the Parameter-elevation Regres-
sion on Independent Slopes Model Climate Group’s Re-
cent Years dataset (https://prism.oregonstate.edu/). Prior

Figure 1. Boxplots of environmental gradients from the National Rivers and Streams Assessment (data from surveys done in 2018
and 2019) within 9 ecoregions of the contiguous United States. CPL 5 Coastal Plains, LSUBD 5 log mean substrate diameter, MSAT 5
mean summer air temperature, NAP 5 Northern Appalachians, NPL 5 Northern Plains, RPDI 5 riparian disturbance index, SAP 5
Southern Appalachians, SPL 5 Southern Plains, TN 5 total N, TP 5 total P, TPL 5 Temperate Plains, TPRCP 5 total annual precipita-
tion, UMW 5 Upper Midwest, WMT 5 Western Mountains, XER 5 Xeric.
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to modeling, we mean-centered and standardized the val-
ues for the environmental gradients within each region.

Benthic macroinvertebrate traits
Traits are measurable characteristics of an organism

that should provide a mechanistic explanation for their
relationship to an environmental gradient (Townsend and
Hildrew 1994, Statzner and Bêche 2010, Hamilton et al. 2020,
Burner et al. 2021).We identified traits that we hypothesized
to be related to a genus’ occurrence with respect to ≥1 envi-
ronmental gradient (scrapers, clingers, pollution tolerance
value [PTV], and thermal optima [ThrmOptV]; Table 3).
Scrapers, a functional feeding group, possess mouthparts
to consume biofilms and macrophytes, and clingers have
morphological features that allow them to attach to rocky
substrates. Both trait states were treated as binary variables

(i.e., presence or absence of the trait). A taxon’s PTV quan-
tifies their ability to tolerate organic pollution, and their
ThrmOptV quantifies their temperature preference. Both
are continuous variables. By focusing on traits with simple
a priori expectations to ≥1 niche component (Table 3), we
evaluated consistency in these relationships among ecore-
gions and multiple environmental gradients. We obtained
trait data from the autecological characteristics assembled by
NRSA (USEPA 2020; https://www.epa.gov/national-aquatic
-resource-surveys/data-national-aquatic-resource-surveys)
and the Freshwater Biological Traits database (USEPA 2012).

JSDMs
We used the Hierarchical Modeling of Species Commu-

nities (HMSC) R package (Hmsc; version 3.0-13; Tikhonov
et al. 2020) to fit separate JSDMs for each region. HMSC is a

Table 2. Environmental gradients and metrics used to quantify them. Where applicable we used data
transformations to improve normality. Because the geometric mean of substrate diameter is already
on the logarithmic scale, no transformation was needed.

Gradient Metric Units Transformation

Nutrient Total N mg/L ln(x 1 1)

Total P ug/L ln(x 1 1)

Salinity Cl2 mg/L ln(x 1 1)

SO4
22 mg/L ln(x)

Physical Log10 geometric mean substrate diameter mm –

Riparian disturbance index – ln(x 1 1)

Climate Mean summer air temperature 7C –

Total annual precipitation mm ln(x)

Table 1. Number of sites and characteristics of genera included in the analysis. Sites were selected to have complete data for the envi-
ronmental gradients and genera were selected to have a prevalence >0.1. CH 5 Chironomidae, CO 5 Coleoptera, CPL 5 Coastal
Plains, D 5 Diptera, E 5 Ephemeroptera, M 5 Megaloptera, NAP 5 Northern Appalachians, NPL 5 Northern Plains, O 5 Odonata,
P 5 Plecoptera, SAP 5 Southern Appalachians, SPL 5 Southern Plains, T 5 Trichoptera, TPL 5 Temperate Plains, UMW 5 Upper
Midwest, WMT 5 Western Mountains, XER 5 Xeric.

Ecoregion
Sites
(No.)

Genera
(No.)

Proportion of genera by taxonomic group

Mean genus
prevalence
(range)

Mean genus
richness
(range)

Not
insects

Insects

CO E M O P T

D

CH Not CH

NAP 227 127 0.14 0.08 0.13 0.02 0.02 0.06 0.17 0.34 0.06 0.25 (0.10–0.94) 31.69 (9–58)

SAP 255 114 0.19 0.10 0.18 0.03 0.01 0.03 0.11 0.31 0.06 0.26 (0.10–0.94) 29.95 (7–57)

CPL 187 80 0.19 0.07 0.10 0.01 0.04 0 0.07 0.48 0.04 0.25 (0.10–0.97) 19.96 (7–39)

UMW 199 107 0.18 0.04 0.16 0.01 0.02 0.02 0.12 0.39 0.07 0.27 (0.10–0.90) 29.23 (7–54)

TPL 202 78 0.21 0.06 0.17 0 0.01 0 0.08 0.45 0.03 0.28 (0.10–0.94) 21.52 (6–41)

NPL 140 79 0.15 0.08 0.19 0.01 0.01 0 0.09 0.43 0.04 0.26 (0.10–0.79) 20.66 (7–42)

SPL 141 63 0.21 0.08 0.13 0 0.02 0 0.10 0.44 0.03 0.29 (0.11–0.84) 18.01 (7–34)

WMT 221 94 0.13 0.05 0.15 0 0 0.09 0.15 0.38 0.05 0.28 (0.10–0.83) 26.59 (5–43)

XER 171 79 0.19 0.05 0.15 0 0.01 0.03 0.11 0.42 0.04 0.26 (0.11–0.70) 20.68 (8–40)
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hierarchical generalized linearmixedmodel that is described
extensively by Ovaskainen and Abrego (2020). Mixed mod-
els consist of fixed and random effects. The fixed effects por-
tion of the HMSCmodel estimates the relationship between
a taxon’s occurrence and a suite of environmental covariates
as regression parameters (i.e., slopes and intercepts). The re-
gression parameters quantify how the probability of occurrence
for each taxon changes along the environmental gradients;
therefore, the regression parameters are referred to as niche
parameters (b) and interpreted as taxon–environment rela-
tionships (Ovaskainen and Abrego 2020). Random effects
are used to account for nonindependence among residuals
from the fixed effects portion of the model. In HMSC, site-
level random effects are modeled from pairwise co-occurrences
and latent variables because multiple taxa are collected from
each site (i.e., residuals for taxa collected from the same site
may not be independent; Ovaskainen et al. 2016b). The abil-
ity to use site-level random effects is a unique attribute of
JSDMs that can advance modeling across large spatial ex-
tents because it improves model performance and accounts
for the effects of unmeasured variables that contribute to a
taxon’s occurrence (Warton et al. 2015, Ovaskainen and
Abrego 2020). By statistically accounting for unmeasured
factors at each site, we were able to focus our analysis and
interpretation on taxon–environment relationships for gra-
dients commonly altered by anthropogenic activities.

An organism’s response to environmental gradients could
be influenced by the traits they express. HMSC uses a hier-
archical (or multilevel) model structure to assess whether
traits influence taxon–environment relationships. Concep-
tually, the model structure is analogous to using regression
analysis with a taxon–environment relationship (i.e., esti-
mated regression coefficients from the fixed effects portion
of the HMSC model) as the dependent variable and a suite
of traits as independent variables. The estimated coefficients

for each trait (γ) are then interpreted as the association be-
tween a trait and a taxon–environment relationship. We re-
fer to these associations as trait–niche relationships. Because
closely related taxa may have similar relationships to their
environment, HMSC uses phylogenetic relatedness (i.e.,
pairwise distances) to model nonindependence among re-
siduals from the trait–niche relationships as random effects
(q). If the residuals from the trait–niche relationship have a
phylogenic structure, it suggests that closely related taxa re-
spond similarly to their environment because of shared traits
that were not included in the analysis (Ovaskainen and
Abrego 2020). A directed acyclic graph of the HMSCmodel
is provided as Fig. 4 in Ovaskainen et al. (2017).

Model fitting and interpretation
For each region, we evaluated taxon–environment rela-

tionships for environmental gradients commonly altered
by anthropogenic activities (i.e., TN, TP, Cl2, SO4

22,MSAT,
TPRCP, LSUBD, and RPDI) as additive fixed effects. Each
model included genus presence–absence as the response var-
iable, environmental gradients as fixed effects, and sample-
level random effects. We also included traits (i.e., scraper,
clinger, PTV, and ThrmOptV) as additive fixed effects and
taxonomic relatedness as random effects for the hierarchical
structure of thesemodels.We converted taxonomic levels to
a phylogenetic tree with the ape package (version 5.6-2;
Paradis and Schliep 2019) in R and assumed equal branch
lengths betweennodes as quantitativemeasures of phylogenic
distances separating all benthic macroinvertebrate genera.

We used Tjur R2 to assess explanatory, predictive, and
conditional predictive power of the models. Tjur R2 is the
mean predicted occurrence probability for sampling units
where a taxon actually occurs minus the mean predicted oc-
currence probability for sampling units where a taxon does

Table 3. Traits used in analysis with a priori expectations for their relationships to environmental gradients (i.e., trait–niche
relationships). Observed relationships are presented in Fig. 5. EPA 5 United States Environmental Protection Agency,
NRSA 5 National Rivers and Streams Assessment.

Trait state Description Function Hypothesis

Clinger Morphological structures
to attach to rocky surfaces
(USEPA 2020)

Genera cling to hard substrates Positively related to substrate diameter and
total annual precipitation because this
behavior may be beneficial in environments
with larger substrates or prone to
scouring events

Scraper Mouthparts for consuming algae/
biofilms (USEPA 2020)

Genera consume primary
production

Positively related to nutrient gradients and
riparian disturbance index because of
increased primary production

Pollution
tolerance
value

A derived index related to organic
and nutrient pollution tolerance
(Source: NRSA autecology data)

Genera tolerate high-nutrient
concentrations

Positively related to nutrient concentrations
and riparian disturbance index because
conditions are favorable for these taxa

Thermal optima A weighted average indicating
temperature preference
(USEPA 2012)

Genera prefer an optimal
temperature

Positively related to mean summer air tem-
peratures because higher water tempera-
tures favor higher thermal optima
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not occur (Tjur 2009). Explanatory power assesses model
predictions against the data used for fitting, predictive power
assesses model predictions at new locations (i.e., using only
fixed effects), and conditional predictive power assesses
model predictions at new locations conditional on the pres-
ence of other taxa (Ovaskainen and Abrego 2020). To eval-
uate predictive power, we used 2-fold cross validation
among sites, and to evaluate conditional predictive power,
we used 2-fold cross validation among sites and 3-fold cross
validation among genera.

We interpreted b as positive when 90% credible interval
(CrI) > 0 and negative when 90% CrI < 0. For each region,
we counted the number of positive and negative relation-
ships identified among the entire regional taxa pool and sev-
eral taxonomic groups (i.e., noninsects; Ephemeroptera,
Plecoptera, Trichoptera [EPT]; and Diptera:Chironomidae)
and report these counts as proportions. Proportional data fa-
cilitated comparisons across regions while accounting for
differences in the number of taxa modeled. We interpreted γ
as positive when 90% CrI > 0 and negative when 90% CrI <
0. For each ecoregion, we report the direction (either posi-
tive or negative) of the trait–niche relationships to visualize
geographic differences. When q is positive (90% CrI > 0),
it indicates that related taxa tend to have similar taxon–
environment relationships because of shared, but unmea-
sured, traits (Ovaskainen and Abrego 2020).

We used predictions from the HMSCmodels to evaluate
how genus, EPT, Chironomidae, and noninsect richness
changed along the gradients. For each region, we iteratively
selected a single gradient (i.e., focal gradient) and predicted
the probability of occurrence for each taxon while holding
the other gradients at a mean value, conditional on the focal
gradient’s value (Ovaskainen and Abrego 2020).We then vi-
sualized how the richness of each taxonomic group changed
along the focal gradient by summing the predicted probabil-
ities for each taxon at 25 equally spaced intervals (Moss et al.
1987). To quantitatively evaluate the trend in mean genus rich-
ness, we calculated the probability that the posterior predictive
distribution of genus richness at the minimum value of a gradi-
ent was different from the posterior predictive distribution of
genus richness at the maximum value. We determined that
the 2were sufficiently different when the probability was ≥0.95.

Unimodal taxon–environment relationships are funda-
mental to niche theory (Yuan 2006) but are not accurately
modeled using linear terms. Because including quadratic terms
for each environmental gradient in a single HMSC model
could potentially lead to overfitting, we also fitted a separate
suite of models for each region to identify whether taxon–
environment relationships were unimodal (Yuan 2004, Aus-
tin 2007).These unimodalmodelswere intentionally simplis-
tic and fitted using presence and absence data as the response
variable and individual gradients with a quadratic term as the
predictor variables. We also used sample-level random ef-
fects but excluded traits and phylogeny to avoid excessive
computation time (Ovaskainen and Abrego 2020).

We identified unimodal relationships when the qua-
dratic term for the environmental gradient was negative
and the maximum of the parabola (Pmax) was within the
range of values used for fitting (Ovaskainen and Abrego
2020, Tikhonov et al. 2020). We calculated the maximum
of the parabola as:

Pmax 5 2 b=2að Þ, (Eq. 1)

where b is the estimated linear coefficient, and a is the es-
timated quadratic coefficient. When a unimodal relation-
ship was identified, we interpreted the peak as the taxon’s
optima for that gradient and report the mean and 90% CrI.
We excluded taxa with unimodal relationships from our
analysis of taxon–environment relationships estimated
from additive fixed effects and richness because they were
uncommon.

We fitted all models using a Dell Precision Tower 7910
(Dell Technologies, Round Rock, Texas) with an Intel®
Xeon® processor (12 cores and 256 gigabytes of memory;
Intel Corporation, Santa Clara, California), the default prior
distributions, and 3 independentMarkov chainMonteCarlo
simulations (Ovaskainen and Abrego 2020). We sampled
each chain 1000� and adjusted transient iterations and thin-
ning to ensure convergence (Table S2). Transient iterations
are discarded to reduce the influence of the starting values
onMarkov chainMonte Carlo simulations, and thinning re-
duces autocorrelation between sequential samples by speci-
fying a number of iterations between each recorded sample
(Gelman et al. 2013). Satisfactory convergence ensures a valid
approximation of the posterior distribution and is evaluated
by the potential scale reduction factor and effective sample
size (Gelman et al. 2013, Tikhonov et al. 2020). We consid-
ered convergence satisfactory when the potential scale reduc-
tion factor was <1.1 and effective sample size was >1500
(Tikhonov et al. 2020; Table S2).

RESULTS
We modeled taxon–environment relationships for 1743

assemblages across 9 ecoregions. Most genera belonged to
Chironomidae (Diptera, 31–48%), noninsects (13–21%),
Ephemeroptera (10–19%), and Trichoptera (7–17%) (Ta-
ble 1). Themedian explanatory Tjur R2 across all taxa varied
from 0.15 in the Coastal Plains (CPL) to 0.24 in theWestern
Mountains (WMT). Themedian conditional TjurR2 (range5
0.05–0.14) was higher than the median predictive Tjur R2

(range5 0.03–0.08) in all regions (Fig. 2), but there was less
difference in the Plains ecoregions (CPL, Upper Midwest
[UMW], Northern Plains [NPL], Temperate Plains [TPL])
compared with others (Appendix S1).

As many as 32 to 58% of the genera in each region had
a relationship with an environmental gradient (Fig. 3).
The proportion of taxa that were associated with each
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environmental gradient reveals the number of taxa that
could potentially be affected if the gradient was altered
within each ecoregion. Among the gradients, LSUBD had

a relationship with the highest percentage of genera in
NPL (58%), WMT (51%), Northern Appalachians (NAP;
50%), CPL (36%), and UMW (29%), whereas MSAT had re-
lationships with more genera in Southern Appalachians
(SAP; 49%), Xeric (XER; 46%), and Southern Plains (SPL;
40%). In TPL, 35% of the genera were associated with TP.
The direction of the taxon–environment relationships elu-
cidate how taxa could change if a gradient is altered (Fig. 3).
Negative taxon–environment relationships were most com-
mon with MSAT in XER (36%), SAP (35%), SPL (21%), CPL
(20%), and UMW (18%) and with Cl2 in NPL (36%) and
WMT (32%). In NAP, 23% of taxa were negatively associated
with RPDI, and in TPL, 29% of taxa were negatively related
to TP. Positive taxon–environment relationships were most
commonwith LSUBD inNAP (45%), SAP (36%),WMT (35%),
CPL (30%), XER (30%), and UMW (0.23%) and with SO4

22

in NPL (35%) and SPL (22%). In TPL, 15% of the taxa had
positive relationships with Cl2.

Taxonomic groups varied in their associationwith the en-
vironmental gradients (Fig. 3). Most Chironomidae were as-
sociated with MSAT in SAP, UMW, WMT, and XER and
with SO4

22 in NPL and SPL. Alternatively, in CPL, NAP,
and TPL, Chironomidae were typically associated with
LSUBD, RPDI, and TP, respectively. Most EPT were associ-
ated with LSUBD in NAP, NPL, SAP, UMW, and XER and
withMSAT inCPL, SPL, andWMT. InTPL,most EPTwere
associated with TN. Most noninsect taxa were associated
with SO4

22 in SAP, TPL, and UMW; with LSUBD in NPL
and WMT; and with MSAT in SPL and XER. In CPL and
NAP,most noninsect associations were with TP andCl2, re-
spectively. Often, genera within a taxonomic group had dif-
ferent associations with the gradients (See Appendix S2 for
mean, standard deviation, and 90% CrIs for the taxon–
environment relationships).

The genus richness at the minimum andmaximum value
of a gradient was predicted to change by as many as 5 to
17 taxa (Fig. 4). LSUBD was associated with the greatest
magnitude of change in genus richness in CPL (9 taxa),
NAP (17 taxa), SAP (17 taxa), SPL (5 taxa), andUMW(9 taxa).
In NPL, TPL, WMT, and XER, genus richness changed the
most with RPDI (8 taxa), TP (7 taxa), SO4

22 (15 taxa), and
MSAT (10 taxa), respectively. Genus richness was not con-
sistently related to the environmental gradients across all
ecoregions (Fig. 4). Visually inspecting changes in each tax-
onomic subgroup revealed that EPT richness tended to
change more steeply than Chironomidae and noninsect
richness for most gradients.

In several ecoregions, trait–niche relationships were con-
sistent with the hypotheses described inTable 3 (Fig. 5). PTV
was positively related to bTN inNAP, UMW, andNPL and to
bRPDI. in UMW, SPL, and XER. Clingers were positively re-
lated to bLSUBD in 5 ecoregions (NAP, UMW, N,WMT, and
XER) and to bTPRCP in 1 ecoregion (SAP). ThrmOptV was
positively related to bMSAT in all regions except UMW and
NAP. We did not find a relationship between scrapers and

Figure 2. Boxplots showing performance metrics for Hierar-
chical Modeling of Species Communities models of aquatic
macroinvertebrate assemblages in 9 ecoregions across the contig-
uous United States. Models included environmental gradients as
additive fixed effects and sample level random effects. Explana-
tory power assesses model predictions against the data used for
fitting, predictive power assesses model predictions at new loca-
tions, and conditional predictive power assesses model predic-
tions at new locations conditional on the presence of other taxa.
Tjur R2 is the mean predicted occurrence probability where a ge-
nus occurs minus mean predicted occurrence probability where
a genus does not occur. The box represents the 25th, 50th, and
75th percentiles of Tjur R2 values for all genera in an ecoregion,
and points are values that exceed 1.5� interquartile range. CPL5
Coastal Plains, NAP 5 Northern Appalachians, NPL 5 Northern
Plains, SAP 5 Southern Appalachians, SPL 5 Southern Plains,
TPL5 Temperate Plains, UMW 5 Upper Midwest, WMT5
Western Mountains, XER 5 Xeric.
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bTN or bTP. In many instances, a single trait was related to
multiple environmental gradients, and these relationships
could be opposing. ThrmOptV was positively related to
bMSAT but negatively related to bTN, bTP, bSO4, bTPRCP, and
bLSUBD. Similarly, clingers were positively related to bLSUBD
but negatively related to bMSAT inWMT.We also found that
residual variation in trait–niche relationships was phyloge-
netically structured (i.e., q > 0; Table S3), indicating that
closely related taxa tend to have similar taxon–environment
relationships.

We identified relatively few unimodal taxon–environment
relationships (Table 4). When unimodal relationships were
detected, they occurred along gradients of SO4

22 concentra-
tion and LSUBD. Most unimodal relationships for SO4

22

were detected in the UMW and XER ecoregions, whereas
most unimodal relationships for LSUBD were detected in
the TPL and CPL ecoregions (See Appendix S3 for mean
and 90% CrIs of optima values). Importantly, unimodal rela-
tionships accounted for <26% (typically <15%) of the taxa in-
cluded for each ecoregion (Table 4).

DISCUSSION
HMSC is a multivariate framework that can seamlessly

integrate disparate information (i.e., environmental factors,
biological traits, phylogenic relationships, and co-occurrences)
routinely collected by biomonitoring programs to quantify
taxon–environment relationships.We used HMSC to quan-
tify taxon–environment relationships for benthic macroin-
vertebrate genera in 9 ecoregions of the contiguous United
States and investigated whether these relationships are re-
lated to a suite of traits. Foremost, our results are important
from a conservation standpoint (Strayer 2006, Collier et al.
2016) because they elucidate how a taxon’s probability of oc-
currence could change if an environmental gradient is al-
tered (Fig. S2). Generally, anthropogenic activities increase
nutrient and salinity concentrations (Friberg et al. 2010,
Kefford et al. 2016), MSAT (Vose et al. 2017), and RPDI
(Kaufmann et al. 1999); decrease sediment diameter (Mur-
phy 2020, Kaufmann et al. 2022); and have region-specific
effects onTPRCP (Easterling et al. 2017). Given these expec-
tations, we found thatmore taxon–environment relationships

Figure 3. The proportion of aquatic macroinvertebrate genera where the 90% credible interval for their taxon–environment relation-
ship does not overlap with 0. Black indicates that the relationship is negative. Gray indicates that the relationship is positive. Numbers in
parenthesis are total number of genera included for each ecoregion. CH 5 Chironomidae, CPL5 Coastal Plains, EPT 5 Ephemeroptera,
Plecoptera, Trichoptera, LSUBD 5 log mean substrate diameter, MSAT 5 mean summer air temperature, NAP 5 Northern Appala-
chians, NI 5 noninsect, NPL 5 Northern Plains, RPDI 5 riparian disturbance index, SAP 5 Southern Appalachians, SPL 5 Southern
Plains, TN 5 total N, TP 5 total P, TPL 5 Temperate Plains, UMW 5 Upper Midwest, WMT 5 Western Mountains, XER 5 Xeric.
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were negative in the direction of anthropogenic alteration, and
genus richness often declined with increasing alteration. Be-
cause the number of taxon–environment relationships and
the change in genus richness varied among gradients, our re-
sults suggest that changes to some gradients could have a

greater effect on macroinvertebrate assemblages than others.
Further, we found trait–niche relationships were often incon-
sistent with a priori expectations, which suggests that traits
maynot consistently predict taxon–environment relationships
in all ecoregions.

Figure 4. Predicted aquatic macroinvertebrate genus richness at the minimum and maximum value for environmental gradients in
9 ecoregions across the contiguous United States. Dots are mean genus richness estimates, and bars are 90% credible intervals. Red
indicates that mean richness at the maximum gradient value was lower than mean richness at the minimum gradient value. Blue indi-
cates that mean richness at the maximum gradient value was higher than mean richness at the minimum value. Lines indicate the
trend in richness for all genera and taxonomic subgroups along gradients. All gradients were standardized to the same scale for visu-
alization. CPL 5 Coastal Plains, EPT 5 Ephemeroptera, Plecoptera, Trichoptera, LSUBD 5 log mean substrate diameter, max 5
maximum, min 5 minimum, MSAT 5 mean summer air temperature, NAP 5 Northern Appalachians, NPL 5 Northern Plains,
RPDI 5 riparian disturbance index, SAP 5 Southern Appalachians, SPL 5 Southern Plains, TN 5 total N, TP 5 total P, TPL 5
Temperate Plains, TPRCP 5 total annual precipitation, UMW 5 Upper Midwest, WMT 5 Western Mountains, XER 5 Xeric.
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Classifying taxon-specific sensitivity and tolerance
Taxon-specific sensitivity and tolerance values can be

assigned using expert opinion (Hawkes 1997), cumulative
frequency distributions (Ashton et al. 2014), weighted
averaging (Whittier and Van Sickle 2010), or univariate-
regression approaches (Yuan 2004, Segurado et al. 2011).
Expert opinion can be subjective and not supported by
empirical data, and cumulative frequency distributions and

weighted averaging do not account for natural variability
(Segurado et al. 2011). Univariate regression-based approaches
can account for natural factors and have been used to cat-
egorize taxa as sensitive or tolerant from the shape of their
response along a stressor gradient (Yuan 2004) or the differ-
ence between a taxon’s occurrence and model predictions
(Segurado et al. 2011). HMSC could advance regression-
based approaches because co-occurrences are used to

Figure 5. Trait–niche relationships for 9 ecoregions across the contiguous United States. Blue indicates that the 90% credible inter-
val (CrI) for the relationship is >0, and red indicates that the 90% CrI for relationship is <0. White indicates that the 90% CrI for the
relationship contains 0. For each map, color shading differentiates ecoregions when multiple trait–niche relationships were detected.
Darker colors indicate stronger relationships, relative to other ecoregions. CPL 5 Coastal Plains, LSUBD 5 log mean substrate diam-
eter, MSAT 5 mean summer air temperature, NAP 5 Northern Appalachians, NPL 5 Northern Plains, PTV 5 pollution tolerance
value, RPDI 5 riparian disturbance index, SAP 5 Southern Appalachians, SPL 5 Southern Plains, ThermOptV 5 thermal optima
value, TN 5 total N, TP 5 total P, TPL 5 Temperate Plains, UMW 5 Upper Midwest, WMT 5 Western Mountains, XER 5 Xeric.
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estimate sample-level random effects (Warton et al. 2015,
Norberg et al. 2019, Ovaskainen and Abrego 2020), which
account for unmeasured variables and improve estimates
for the fixed effects (Bolker et al. 2009, McElreath 2016).
Sample-level random effects cannot be estimated for uni-
variate models because they are completely confounded
with residual variation (Ovaskainen and Abrego 2020). Fur-
ther, HMSC is fitted using Bayesian inference such that
measures of uncertainty (i.e., 90% CrI) are generated for
each taxon–environment relationship.

Because taxon–environment relationships can assess how
taxa could change if the environment changes (Domisch et al.
2011, Funk et al. 2013, Bennetsen et al. 2016), the direction of
the relationship can indicate whether they are sensitive or
tolerant (Yuan 2004). Indeed, Yuan (2004) identified taxa
with a monotonically decreasing relationship along a stressor
gradient as sensitive and demonstrated that sensitive taxa
richness decreased with increasing anthropogenic distur-
bance.Our results could be used in a similar fashion to quan-
tify the number of sensitive taxa that occur at a site. In addi-
tion, we provide the magnitude of each taxon–environment
relationship (i.e., estimated regression coefficient). These
values could be used to assess the relative importance of each
environmental gradient for a taxon’s occurrence (Van Sickle
et al. 2006) or to rank taxa within an ecoregion according to
their sensitivity or tolerance to a specific gradient.

We define taxon–environment relationships across the
entire environmental gradient observed within an ecoregion
such that sensitivity and tolerance can be adapted to situa-
tions where alteration is site specific or in a different direc-
tion than general trends (Fig. S2). For example, some prairie
streams are historically turbid (Matthews 1988), and a re-
duction in fine sediments could be considered a stressor

for taxa that would occur there naturally. Similarly, water-
bodies that have naturally high nutrient (Carpenter 1981)
or salinity (Kefford et al. 2016) levels may have taxa that could
decline if nutrient or salinity concentrations decreased. In-
deed, macroinvertebrate assemblages are often used to infer
difficult-to-measure abiotic conditions (Stevenson et al. 2008,
Hubler et al. 2016), and acquiring an expectation of how an-
thropogenic activities change environmental conditions
could be challenging. However,many studies have generated
site-specific estimates for least-disturbed abiotic conditions
(sensu Stoddard et al. 2006) from hindcast modeling (Dodds
and Oakes 2004, Hawkins et al. 2010, Olson and Hawkins
2012, Hill and Hawkins 2014, Kaufmann et al. 2022) or re-
gionally representative reference sites (Reynoldson et al.
1997, Stoddard et al. 2006, 2008,Herlihy et al. 2008), and his-
torical climate data are available (https://prism.oregonstate
.edu/historical/). Thus, the taxon–environment relationships
we report could be used in tandem with efforts to model ex-
pected, desired, or historical abiotic conditions, but it is im-
portant to be cognizant of the range of environmental values
used to fit JSDMs because the taxon–environment relation-
ship could not be valid if extrapolated.

Taxon–environment relationships and changes in
genus richness

We found that the proportion of taxa associated with
each gradient and the change in genus richness along the
gradients varied among ecoregions. One potential explana-
tion for these differences is that the ecoregion boundaries
enclose different portions of the environmental gradients
(Fig. 1). If an organism’s range extends beyond these bound-
aries, it is conceivable that 1 ecoregion contains values at the
upper limit of a taxon’s distribution, and another contains
values at the lower limit. Accordingly, regions that contain
extreme ends of a gradient could have a greater proportion
of the taxa with positive or negative associations than re-
gions that only contain intermediate values. Others have
proposed that inconsistencies in gradient length among re-
gions could contribute to context dependency in an organ-
ism’s response to a stressor (Feld et al. 2016, Segurado et al.
2022), and future efforts could evaluate potential effects
of gradient lengths by comparing the length of a gradient
across a taxon’s range to the length of the gradient within
an ecoregion.

Regardless of the underlying reason, regional variation
provides insights into the proportion of a regional assem-
blage that could respond if the gradient changes and into
the magnitude of change in genus richness between the
gradient’s extreme values. We found that substrate diame-
ter and MSAT were often associated with the greatest pro-
portion of taxa. Indeed, substrate size may affect benthic
macroinvertebrates by providing refugia, trapping detritus,
increasing surface area (Flecker and Allan 1984), or en-
hancing structural heterogeneity (but see Palmer et al.

Table 4. Proportion of taxon–environment relationships identi-
fied as unimodal. Unimodal relationships were not detected for
the other gradients we assessed. CPL 5 Coastal Plains, LSUBD 5
log geometric mean substrate diameter, NAP 5 Northern Appala-
chians, NPL 5 Northern Plains, SAP 5 Southern Appalachians,
SPL 5 Southern Plains, TPL 5 Temperate Plains, UMW 5
Upper Midwest, WMT 5 Western Mountains, XER 5 Xeric.

Region SO4
22 LSUBD

NAP 0.15 0.12

SAP 0.00 0.02

CPL 0.06 0.16

UMW 0.23 0.07

TPL 0.00 0.26

NPL 0.00 0.01

SPL 0.00 0.05

WMT 0.10 0.06

XER 0.22 0.05
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2010). On the other hand, MSAT is a major determinant of
streamwater temperature, which, in turn, could influence
the distribution of stream biota (Hill and Hawkins 2014,
Hill et al. 2014). Our finding that relatively more taxa were
associated with these gradients could suggest that changes
to them could have a relatively large effect on benthic
macroinvertebrates.

We also found that genus richness could change by as
many as 5 to 17 genera andwas typically lower in the expected
direction of anthropogenic disturbance. For example, we
predicted genus richness to be higher when mean substrate
diameter was larger, which is consistent with our finding of
proportionallymore taxa being associatedwith this gradient.
Interestingly, genus richness was often lower in habitats
with higher nutrient concentrations, even though relatively
few taxa were associated with nutrient gradients. The de-
crease in genus richness along nutrient gradients suggests
that a few taxa with strong negative associations can change
assemblage-level metrics. Collectively, these changes in ge-
nus richness could support the notion that increases in fine
sediment inputs (i.e., decreasing mean substrate diameter)
and nutrient inputs could decrease macroinvertebrate ge-
nus richness (Wood and Armitage 1997, Jones et al. 2012,
Stoddard et al. 2016, Lin et al. 2021).

In addition, we report the taxon–environment relation-
ships and changes in genus richness for taxonomic sub-
groups because Chironomidae, EPT, and noninsects are widely
used indices in biological assessments (USEPA 2020). By
providing information about individual taxonomic groups,
it could elucidate the importance of taxon-specific responses
in the behavior of aggregatedmetrics (King and Baker 2010).
Most genera we modeled belonged to Chironomidae and,
therefore, accounted for most of the taxon–environment re-
lationships. This family is often considered an indicator of
poor water quality (Serra et al. 2017), but we found that
the direction of taxon–environment relationships varied
among genera for many gradients. Similarly, we found vari-
ation among taxon–environment relationships for genera
belonging to EPT, even though this group is often used to in-
dicate high-quality streams (King and Baker 2010). Regard-
less of the mixed associations at the genus level, we found
that EPT genera richness typically changed more sharply
along the gradients compared with the other taxonomic
groups and seemingly contributed more to the overall pat-
tern in genus richness. Indeed, this result is perhaps unsur-
prising givenmany successful applications of EPTmetrics in
biological assessment.

Trait–niche relationships
An organism’s traits can provide a mechanistic link to

their occurrence along an environmental gradient (Statzner
andBêche 2010,Heino et al. 2013), andwe found that simple
a priori expectations were supported for some trait–niche
relationships. In ecoregions where expectations were cor-

roborated, our results support the notion that the expression
of a trait is related to an organism’s association with an en-
vironmental gradient (Townsend et al. 1997, Ovaskainen
andAbrego 2020). For example, organismswith clinging hab-
its typically have a positive response to substrate size and are,
therefore, potentially less likely to tolerate sedimentation
(i.e., trait is presumed to be beneficial in habitatswith coarser
substrates). Similarly, organisms with high ThrmOptV or
PTV typically respond positively toMSATand nutrient con-
centrations. As a consequence, organisms possessing these
traits could become more prevalent under warming tem-
peratures or increasing levels of organic pollution. In eco-
regions where we confirmed that traits are related to taxon–
environment relationships, knowledge of an organism’s traits
may help provide a mechanistic explanation for their re-
sponse if the environmental gradient was altered.

However, not all a priori trait–niche relationships were
supported. For example, a genus’ response to nutrient con-
centrations was typically not related to whether they were
a scraper or to their pollution tolerance level. Scrapers could
have positive responses to nutrient concentrations via indi-
rect effects on primary production (Feminella and Hawkins
1995, Stelzer and Lamberti 2001), andPTVcould have a pos-
itive association when TN is associated with organic pollu-
tion. The lack of a strong relationship for both scrapers and
pollution tolerancemay indicate that another gradient could
determine whether these traits are advantageous. For exam-
ple, scrapers tend to consume biomass that attaches to coarse
sediments (Yao et al. 2017), and a relatively open canopy is
needed for nutrients to enhance primary production. If high
nutrient concentrations do not coincide with appropriate
substrates or an open canopy, then the trait may be decou-
pled from an organism’s response to nutrient gradients. In
addition, the relatively coarse assignment of genera to trait
values could also affect our results (Yuan 2010), and a
fuzzy-coding approach to assignments may better capture
plasticity among individuals and differences in life cycles
(Silva et al. 2017). Understanding the conditions and contin-
gencies in trait relationships requires further investigation.

Unimodal relationships
Unimodal taxon–environment relationships are funda-

mental to niche theory (Yuan 2006) but are not accurately
modeled by linear relationships.Generally, unimodal relation-
ships are expected when abiotic stress limits the distribution
of taxa at both ends of an environmental gradient (Normand
et al. 2009). These unimodal relationships were uncommon,
which could indicate that the range of values for environmen-
tal gradients within an ecoregion often did not include the
full range of conditions that limit each taxon’s distribution.
For example, we did not detect unimodal relationships with
MSAT, and this gradient was relatively narrow within each
ecoregion whereas the few unimodal relationships we de-
tected were along relatively long gradients of LSUBD and
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SO4
22 (Fig. 1). Still, for some relatively long gradient lengths

(e.g. RPDI), we found a low number of unimodal relation-
ships. This result could suggest that some organisms occur
only in habitats without anthropogenic activity or that are
degraded and do not have aminimumormaximum require-
ment for an environmental gradient (Yuan 2004, 2006).

Future application
HMSC uses a single model to provide a comprehensive

framework to quantify taxon–environment relationships,
investigate the association between traits and these rela-
tionships, and predict how assemblages could change along
environmental gradients. This framework is rich with op-
portunities for future analysis (Warton et al. 2015, Ovas-
kainen et al. 2017, Norberg et al. 2019, Ovaskainen and
Abrego 2020).

Foremost, conditional predictions are possible because
HMSCmodels all taxa simultaneously and allows the model
to predict the occurrence of a taxon based on the known oc-
currence of other taxa.We found that conditional prediction
improved model performance for all ecoregions, which sug-
gests that future efforts could consider fewer covariates
(fixed effects) without sacrificing predictive performance if
some taxa are considered known (Fig. 2). Conditional pre-
diction could also be useful for incorporating biotic interac-
tions into predictions (White et al. 2021). For example, in a
restoration context, it may be possible to assess whether a
taxon’s probability of occurrence at a site increases or de-
creases based on the presence of another taxon. In the pre-
sent study, we found that conditional predictions varied
among ecoregions, which could suggest that pairwise associ-
ations between taxa are weaker in some regions (Ovaskainen
and Abrego 2020). Interestingly, anthropogenic disturbance
can weaken co-occurrences among macroinvertebrates (Lar-
sen and Ormerod 2014), and we found that the ecoregions
suspected to have the most anthropogenic disturbance
(i.e., plains) had the least improvement in conditional perfor-
mance, but this pattern requires further investigation.

HMSC can also partition variance in occurrences among
groups of environmental variables and random processes
(Ovaskainen andAbrego 2020). In a supplementary analysis,
we confirmed that the fixed effects explained more variation
in occurrences than the random effects for all regions except
UMW, and the proportion of variance explained by a group
of variables differed among regions (Fig. S3). However, al-
though variance partitioning can be applied to any model,
we refrain from interpreting these results extensively be-
cause probit models use a nonlinear link function to convert
the linear predictor into the scale of the data (Ovaskainen
and Abrego 2020). Thus, although this feature could poten-
tially offer further insight into factors underlying regional
variation, further analysis is needed.

Finally, HMSC can be complex and computationally in-
tensive to fit. This process required us to use different model

variations to identify unimodal relationships and quantify
the effects of multiple gradients as additive fixed effects.
However, the effects of multiple stressors are not always ad-
ditive, and understanding the interactions among stressors is
important (Townsend et al. 2008, Clements et al. 2012, Feld
et al. 2016, Segurado et al. 2022). We recommend future re-
search incorporate interactions by focusing on fewer envi-
ronmental gradients and smaller spatial extents to avoid
overfitting and computational limitations. Nonetheless, this
framework permitted us to evaluate relationships between
benthic macroinvertebrate genera and a suite of environmen-
tal gradients commonly altered by human activities for multi-
ple ecoregions. Importantly, our results indicate that these re-
lationships can be geographically dependent and suggest that
a regionalized perspective is necessary to develop more local-
ized estimates of taxon-specific sensitivities and tolerances.
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